Timestamps in Message-Passing Systems That Preserve the Partial Ordering

Fidge, C.J., Timestamps in Message-Passing Systems that Preserve the Partial Ordering, Proc. 11th Australian Comp. Sci. Conf., 1988, pp. 56-66.

Timestamping is a common method of totally ordering events in concurrent programs. However, for applications requiring access to the global state, a total ordering is inappropriate. This paper presents algorithms for timestamping events in both synchronous and asynchronous message-passing programs that allow for access to the partial ordering inherent in a parallel system. The algorithms do not change the communication graph or require a central timestamp issuing authority.

이 논문은 Vector Clock으로 알려진 개념을 소개하고 있다. Vector Clock은 [Fidge 1998]과 [Mattern 1998]에서 독립적으로 고안된 알고리즘인데, Fidge의 논문쪽이 좀 더 읽기 쉬운 편이라고 한다.

Limitation of Lamport’s logical clock

Clock Condition. For any events a, b:
if a → b then C(a) < C(b).

Lamport가 정의한 논리적 시계는 두 사건 사이의 happened-before 관계가 있다면 이를 반영하는 시계를 정의하고 있습니다. 그리고 이를 이용해 임의의 완전순서를 정의하고 있습니다. 이 완전순서는 임의의 프로세스 사이의 순서를 이용하고 있으므로 사건들을 정렬할 수 있는 방법 중의 임의적인 한 방법이고, 논리적 시계 이상의 어떤 정보가 추가되지는 않습니다.

Lamport가 정의한 논리적 시계의 문제는 이 논리적 시계를 통해서 사건들 사이의 인과성 (causality)를 알아낼 수 없다는 것입니다. 즉, C(a) < C(b)라고 해서 a  b라고 말할 수 없는 것입니다. 구체적으로 말해, C(a) < C(b)가 의미할 수 있는 것은 a와 b 사이에 happend-before 관계가 있는 것, 즉  a  b인 경우와, a와 b 사이에 happend-before 관계를 판단할 수 없고 b가 a에 대해 happened-before가 아닌 것, 즉 b ↛ a인 경우가 있습니다.

Vector Clock

Vector Clock이라는 단어를 논문에서 사용하고 있지는 않지만, 그 단어가 의미하듯이 논리적 시계의 타임스탬프를 integer가 아니라 다음과 같이 프로세스 수 만큼의 타임스탬프를 가진 배열로 대체하고 있습니다.

[c1, c2 … cn]

그리고 이 타임스탬프를 유지하기 위한 알고리즘은 아래와 같습니다. 타임스탬프가 배열이 되었다는 것 이외에 Lamport의 알고리즘과 큰 차이가 없다고도 얘기할 수 있겠지만, 주의를 기울여야 하는 부분은 메시지를 수신하는 프로세스에서는 메시지를 송신한 프로세스에 해당하는 타임스탬프 배열 항목의 값만을 증가시킨다는 것입니다.

Rule RA 1: Initially all values are zero.

Rule RA 2: The local clock value is incremented at least once before each atomic event

Rule RA 3: The current value of entire timestamp array is piggybacked on every outgoing signal

Rule RA 4: Upon receiving a signal, a process sets the value of each entry in the timestamp array to be the maximum of the two corresponding values in the local array, and in the piggybacked array received. The value corresponding to the sender, however, is a special case and is set to be one greater than the value received (to allow for transit time), but only if the local value is not already greater than that received (to allow for signal “overtaking” as described below), i.e.

q?other_array; /* receive timestamp array from process q */

if local_array[q] <= other_array[q] then
    local_array[q] := 1 + other_array[q];
for i := 1 to n do
    local_array[i] := max(local_array[i], other_array[i]);

Rule RA 5: Values in the timestamp arrays are never decremented.

이 논문에서는 설명하고 있지 않지만, 이러한 알고리즘으로 얻어지는 타임스탬프의 의미는 수신한 메시지에 근거해서 추측할 수 있는 가장 정확한 송신 측의 타임스탬프라는 것입니다. 또한, 수신한 프로세스에서 발생할 현재의 사건에 대해 happened-before 관계에 있는 송신 측의 프로세스의 가장 마지막 사건의 타임스탬프이기도 합니다.

이러한 타임스탬프 배열은 다음과 같이 비교될 수 있습니다.

각각 프로세스 p, q에서 실행된 사건 e, f를 ep, fq로 나타내고, 각 사건에 대한 타임스탬프 array를 Tep, Tfq, 그 타임스탬프 배열 중 프로세스 p에 해당하는 타임스탬프를 Tep[p], Tfq[p] 라고 할 때,

ep → fq iff Tep[p] < Tfq[p]

여기서 주목할 점은 iff 즉, 사건의 happened-before 관계와 타임스탬프의 대소 관계가 동치관계라는 것입니다. 임의의 두 사건이 주어졌을 때 인과성이 있는지 여부와 어떤 사건이 어떤 사건에 대해 인과성이 있는지를 판단할 수 있습니다.

ep ↔ fq if Tep[p] ≮ Tfq[p] and Tfq[p] ≮ Tep[p]

타임스탬프 사이의 대소 관계가 어느 방향으로도 성립하지 않는다면 두 사건은 동시적(concurrent)하다고 얘기할 수 있습니다.

Applications

그렇다면 논리적 시계를 통해서 인과성을 알아내는 것은 왜 필요한가에 대해서 이 논문이 예로 들고 있는 것 중 하나는 여러 프로세스들에 의해서 저장되는 상태의 스냅샷들에 타임스탬프를 이용해서, 전체 프로그램 상태에 대해 정상적인 상태인지 검사를 할 수 있고 이를 통해 역실행 (reverse execution), 에러의 복구, 롤백 등이 가능하다는 것입니다. 실제로 이후에 발표된 Dynamo나 Riak 등 Vector Clock을 이용하는 것으로 알려진 시스템에서는 동시적인 쓰기 등에 의해 어떤 데이터에 대해 2개 이상의 복제본이 발생했을 때 이를 해소하기 위해서 인과성을 활용하고 있는 사례를 볼 수 있습니다.

References

  • [Fidge 1998] Fidge, C.J., Timestamps in Message-Passing Systems that Preserve the Partial Ordering, Proc. 11th Australian Comp. Sci. Conf., 1988, pp. 56-66.
  • [Mattern 1998]  Mattern, F. Virtual time and global states of distributed systems. Proc. “Parallel and distributed algorithms” Conf., (Cosnard, Quinton, Raynal, Robert Eds), North-Holland, 1988, pp. 215-226.

Time, Clocks, and the Ordering of Events in a Distributed System

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system.Commun. ACM 21, 7 (July 1978), 558-565.

The concept of one event happening before another in a distributed system is examined, and is shown to define a partial ordering of the events. A distributed algorithm is given for synchronizing a system of logical clocks which can be used to totally order the events. The use of the total ordering is illustrated with a method for solving synchronization problems. The algorithm is then specialized for synchronizing physical clocks, and a bound is derived on how far out of synchrony the clocks can become.

이 논문에 대해서는 Paxos Made Simple에서 이미 아래와 같은 소개를 한 적이 있습니다.

Leslie Lamport는 분산 컴퓨팅 분야에서는 너무나 유명한 분이기 때문에 따로 설명할 필요가 없을 정도입니다. 예를 들어, 1978년에 출판된 “Time, Clocks, and the Ordering of Events in a Distributed System”과 같은 페이퍼는 인용 회수로 볼 수 있는 그 영향력 뿐만 아니라 OS 수업의 읽기 과제로도 빠질 수 없는 그야말로 seminal work입니다.

1. “Happened before” 관계

가장 먼저, “Happened before” 관계라는 분산시스템 내에서 사건(event)들의 순서를 표현할 수 있는 부분순서(partial ordering)를 제안하고 있습니다.

“Happened before” relation은 분산시스템에서 구현이 어려운 물리적 시계 (physical clock)를 사용하지 않더라도 사건들의 순서를 표현할 수 있음을 보여주고 있습니다. 즉, 사건이 발생한 전역적으로 통용되는 시각을 알지 못해도 우리는 자연스럽게 사건의 순서를 정할 수 있습니다.

또한, 서로 다른 프로세스 사이에서 메시지를 주고 받을 경우에 사건 사이의 인과성(causality)이 발생하는 것을 다음과 같은 정의에 담고 있습니다.

Definition. The relation → on the set of events of a system is the smallest relation satisfying the following
three conditions:

  1. If a and b are events in the same process, and a comes before b, then a → b.
  2. If a is the sending of a message by one process and b is the receipt of the same message by another process, then a → b.
  3. If a → b and b → c then a → c.

Two distinct events a and b are concurrent if a ↛ b and b ↛ a. Assume a ↛ a for any event a. So → is an irreflexive partial ordering on the set of all events in the system.

2. Logical Clocks

논리적 시계는 하나의 프로세스 내의 각 사건들에 대해 단조 증가하는 숫자를 할당하는 것으로 볼 수 있으며, 물리적 시계가 아니라 사건이 발생한 순서에 기초해야 합니다.

Clock Condition. For any events a, b:
if a → b then C(a) < C(b).

“Happened before” 관계의 정의에 따라, 각 프로세스는 사건이 발생할 때마다 증가하는 타임스탬프를 부여하며, 프로세스 사이에 메시지를 송신할 때 타임스탬프를 함께 송신하며, 메시지를 수신하는 측에서는 수신한 타임스탬프보다 더 큰 타임스탬프를 새로운 사건에 할당합니다.

3. Ordering the Events Totally

위에서 정의된 논리적 시계만으로는 분산시스템 내의 사건들의 완전순서(total ordering)는 불가능하기 때문에, 프로세스 사이의 임의의 순서(!)를 도입해, 완전순서를 만들 수 있습니다.

In case two or more events occur at the same time, an arbitrary total ordering ≺ of processes is used. To do this, the relation ⇒ is defined as follows:

If a is an event in process Pi and b is an event in process Pj , then a ⇒ b if and only if either:
i. Ci<a> < Cj<b> or
ii. Ci<a> = Cj<b> and Pi ≺ Pj

이렇게 정의된 완전순서를 이용해 분산시스템에서의 상호배제(mutual exclusion) 문제를 해결하는 방법을 제시하고 있습니다.

간단히 얘기하면, 어떤 프로세스가 자원을 요청할 때는 자신의 타임스탬프를 함께 다른 모든(!) 프로세스들에게 전송하고, 이 자원의 요청은 요청한 프로세스 뿐만 아니라 모든 프로세스의 큐에 위에서 정의된 완전순서대로 정렬됩니다. 이 큐에서 가장 앞에 있는 자원 요청이 자원을 획득해야한다고 볼 수 있는데, 모든 프로세스들이 동일한 큐를 유지해야하기 때문에, 자원 획득을 위해서는 모든 다른 프로세스들로부터 receipt 메시지를 수신한 조건에서만 자원 획득이 가능합니다. 또한, 다른 프로세스의 자원 요청에 대한 응답과 자신의 자원 요청의 (타임스탬프의 순서는 올바르다고 하더라도) 전송 순서가 바뀌는 경우는 두 프로세스 사이의 통신은 순서대로 일어난다는 가정에 의해 발생하지 않습니다.

이 구현은 1개 이상의 프로세스의 실패나 메시지의 소실 등을 가정하고 있지 않기 때문에 현실적으로 사용할 수 있는 알고리즘은 아니지만, 분산시스템에서의 완전순서의 유용성을 보여주고 있다고 생각합니다. 그리고, Lamport가 이후에 제안한 Paxos가 바로 현실적인 환경 하에서의 완전순서를 보장하기 위한 방법을 제공하고 있는 것으로 보입니다.

4. Anomalous Behavior

위에서 제시한 상호배제 알고리즘에서 사건 사이의 인과성이 외부화됨으로써 발생할 수 있는 문제를 제시하고 있습니다. 예를 들어, 자원 요청 A를 한 후, 전화를 걸어 다른 컴퓨터에서 자원 요청 B를 한 경우, 자원 요청 A와 자원 요청 B 사이에는 실제로 인과성이 존재하지만, 논리적 시계의 체계는 이를 인지하지 못하므로, 자원 요청 B가 더 낮은 타임스탬프를 획득해 먼저 자원을 획득할 수 있다는 것입니다.

이를 해결하기 위한 방법으로 2가지 방법을 제시하고 있는데, 첫번째는 “happened-before” 관계에 필요하지만 외부화된 정보를 시스템 내로 도입하는 것입니다. 즉, 자원 요청 B를 하는 사용자에게 자원 요청 A 보다 더 이후의 타임스탬프를 발급하도록 자원요청 A의 타임스탬프를 전화를 통해 알려주는 방법 등으로 논리적 시계 체계를 유지하는 책임을 부여하는 것입니다.

다른 방법은 외부화된 사건들 사이의 관계를 포함해 모든 사건들을 정렬할 수 있는 물리적인 시계의 체계를 구성하는 것입니다. 이 시계들은 다음의 Strong Clock Condition을 만족해야 합니다.

Let S be the set of all system events and S be the set containing S along with relevant events external
to the system. Let ↪ denote the “happened before” relation for S.

For any events a, b in S: if a ↪ b then C<a> < C<b>.

5. Physical Clocks

Strong Clock Condition을 만족하기 위해서는 물리적 시계는 다음과 같은 조건을 만족해야합니다.

Let Ci(t) denote the reading of clock Ci at physical time t. Assume that Ci(t) is a continuous, differentiable
function of t except for isolated discontinuities introduced by clock resets.
PC1. There exists a constant k << 1 such that for all i: |dCi(t) / dt – 1| < k.
PC2. For all i, j : |Ci(t) – Cj(t)| < e.

PC1은 물리적 시계가 가는 속도가 물리적 시간이 흐르는 속도와 일정 오차 범위 내에 있다는 것을 의미합니다. 일반적인 수정 발진 방식의 시계의 경우, k는 약 10-6정도로 언급하고 있으며, PC1 자체는 만족되는 것으로 가정하고 있습니다.

한편, PC2는 물리적 시계들 사이의 오차가 일정 범위 내에 있다는 것을 의미합니다. PC2를 보장하기 위해서 물리적 시계의 보정을 위한 구현 방법을 제시하고 있습니다.

Let vm = t’ – t be the total delay of m which is unknown to the receiving process. Let µm be some minimum delay >= 0 known by the receiving process such that µm <= vm.

IR2′. a. If Pi sends a message m at physical time t, then m contains a timestamp Tm = Ci(t).
b. Upon receiving a message m at time t’, process Pj sets Cj(t’) equal to max(Cj(t’ – 0), Tm +
µm).

메시지에 타임스탬프를 넣어서 보내고, 이를 수신하는 측에서는 메시지를 통해 받은 타임스탬프와 최소 통신 지연 시간 이후의 시각으로 시계를 재설정하는 방식이라고 할 수 있고, 이러한 구현 요구사항을 만족한다면, PC2를 만족하는 것을 증명할 수 있다고 합니다. 이 증명에서는 일정 시간 내에 메시지가 전체 프로세스 사이로 전송되는 상황을 가정하고 있으므로, 메시지를 주고 받지 않는 조건을 염두에 두고 있는 것 같지는 않습니다.

한편, 최소 지연시간에 해당하는 µm은 일반적으로 거리와 빛의 속도로 계산할 수 있는 수준의 값으로 언급되고 있습니다. 그리고, 주어진 µm에 대해 k와 e가 얼마나 작아야 하는지에 대한 계산 방법도 설명하고 있습니다.

현실적으로는 이 논문에서 정의된 Physical Clock은 항상 가장 빠른 시계에 맞춰지게 되므로 실제 시간 (physical time)보다 더 빨라지게 되겠지만, 분산시스템의 동기화 문제를 해결하는 능력과는 무관하다고 할 수 있을 것 같습니다.

6. Closing

이 논문은 분산시스템의 문제에 대한 이해에 가장 중요한 사고 도구로 사용할 수 있는 중요한 개념들을 정의하고 있는 것 같습니다. 내용 자체를 정확하게 이해했는지의 여부를 차치하더라도, 이러한 개념이 마음에 와닿기 위해서는 몇 번은 더 읽어봐야 할 것 같습니다.

다음에는 Vector Clock에 관한 논문인 C. Fidge의 Timestamps in Message-Passing Systems That Preserve the Partial Ordering을 읽어볼 예정입니다.

What consistency does your key-value store actually provide?

What consistency does your key-value store actually provide? by Anderson, Eric, et al

Many key-value stores have recently been proposed as platforms for always-on, globally-distributed, Internet scale applications. To meet their needs, these stores often sacrifice consistency for availability. Yet, few tools exist that can verify the consistency actually provided by a key-value store, and quantify the violations if any. How can a user check if a storage system meets its promise of consistency? If a system only promises eventual consistency, how bad is it really? In this paper, we present efficient algorithms that help answer these questions. By analyzing the trace of interactions between the client machines and a key-value store, the algorithms can report whether the trace is safe, regular, or atomic, and if not, how many violations there are in the trace. We run these algorithms on traces of our eventually consistent key value store called Pahoehoe and find few or no violations, thus showing that it often behaves like a strongly consistent system during our tests.

예전에 HP-KVS에 관련해서 자료를 찾다가 발견한 페이퍼인데, 얼마전 한국에 다녀올 때 읽어보게 되었습니다.

1. Perceived consistency rather than worst-case consistency

이 페이퍼는 일반적으로 key-value store들이 보장하는 worst-case consistency가 아니라, 실제로 client에 의해서 관찰되는 consistency의 수준을 측정하는 알고리즘을 제안하고 있다. 우리가 스토리지 기술을 선택할 때는 물론 worst-case consistency가 고려되기는 하지만, 실제로는 ‘실용적인’ 접근을 취하는데, 그것이 의미하는 바는 애플리케이션의 액세스 패턴에 따라 사용자가 느끼는 consistency의 수준이 달라질 수 있음을 고려해서 스토리지 기술을 선택한다는 것이다. 이 페이퍼가 해결하려는 문제 자체가 엄밀하거나 학술적이기 보다는 실용적인 의미를 해석하려는 것이기 때문에 한계는 있겠지만, 어떤 worst-case consistency를 가진 스토리지 – 예를 들어 eventually consistent 스토리지들이 어떤 애플리케이션에 필요한 consistency를 달성하기에 충분한지 충분하지 않은지에 대해서 매우 피상적으로 논의하는 것보다는 체계적인 방법을 제공한다는 점 그리고, 그러한 방법이 존재할 수 있다는 점에서 의미가 있는 것 같다.

2. A eager, eventually consistent protocol often achieves strong consistency

이 알고리즘을 통한 검증을 역시 HP에서 만든 eventually consistent key-value store인 Pahoehoe를 가지고 실험한 결과를 보여주고 있는데, 가장 concurrent한 조건 (128 concurrent processes on 1 key)에서도 consistency violation의 수가 10% 이하로 발생하고 있고, 일반적인 조건 하에서는 1% 수준이다. 그 이유를 우리가 일반적인 웹 애플리케이션에서 예상하고 있는 것과 마찬가지로 concurrent write 하에서의 read가 많지 않기 때문으로 설명하고 있다.

3. Lamport’s consistency assumption on registers: safe, regular, and atomic

이 페이퍼가 검증하려고 하는 consistency 수준의 분류로 Leslie Lamport가 On Interprocess Communication. Part I: Basic Formalism에서 제안한 register의 3가지 consistency semantic을 사용하고 있다. 이는 다음과 같다.

3가지의 consistency 모두 write와 concurrent하지 않은 read는 가장 최근의 write에 의한 값을 return 해야한다. 차이는 write와 concurrent한 read에서 발생한다.

  • safe: write와 concurrent한 read는 임의의 값을 return
  • regular: write와 concurrent한 read는 가장 최근의 write에 의한 값과 concurrent한 write들에 의한 값들 중 하나를 return
  • atomic: write와 concurrent한 read도 가장 최근의 write에 의한 값을 return

worst-case consistency를 가지고 예를 든다면, 최근 유행하는 eventual consistent storage들은 concurrent하지 않은 read에 대해서 가장 최근의 write에 의한 값을 return하는 것을 보장하지 않으므로 가장 느슨한 수준인 safe 조차 만족하지 못한다. 반면에 일반적인 ACID 데이터베이스는 atomic 수준에 해당한다.

4. Methods

이 페이퍼가 제안하고 있는 알고리즘은 대략 다음과 같다.

  1. 어떤 key-value store에 대한 클라이언트의 모든 액세스에 대해 시작 시각과 종료 시각, 그리고 저장하거나 읽어온 값의 로그를 기록한다.
  2. 이 로그를 바탕으로 오퍼레이션이 vertex이고, should-happen-before 관계가 edge인 directed graph를 구성한다. 이 때 이 관계는 검증하려는 consistency 종류에 따라서 달라지는데, 대체로 시간의 관계, 값의 인과 관계를 의미한다고 보면 된다.
  3. 구성된 graph에서 cycle이 발견되지 않으면 consistent, 발견되면 inconsistent하다고 판단한다.

straight-forward하기 때문에 쉽게 이해할 수 있다. 시각의 정확성이나 값의 인과관계를 찾는 부분 등에서 보완이 필요한 것 같긴 하지만 중요한 문제는 아닌 것 같다.

5. Measuring Consistability

여러 eventually consistent 스토리지들은 failure가 발생했을 때 consistency를 희생하게 되어있는데 이 때의 consistency 희생이 어느 정도인지 측정하는 작업이 필요하다.

6. Further Reads

  • J. Misra, Axioms for memory access in asynchronous hardware systems, 1986.
  • L. Lamport, On interprocessing communication, Part I: Basic formalism and Part II: Algorithms, 1986
  • W. Vogels, Eventually consistent, 2009
  • A. Aiyer, et al., On the availability of non -strict quorum systems, 2005
  • E. Anderson, et al., Efficient eventual consistency in Pahoehoe, an erasure-coded key-blob archive, 2010

Paxos Made Simple

Paxos Made Simple by Leslie Lamport

Paxos Made Simple이라는 글의 저자인 Leslie Lamport는 분산 컴퓨팅 분야에서는 너무나 유명한 분이기 때문에 따로 설명할 필요가 없을 정도입니다. 예를 들어, 1978년에 출판된 “Time, Clocks, and the Ordering of Events in a Distributed System”과 같은 페이퍼는 인용 회수로 볼 수 있는 그 영향력 뿐만 아니라 OS 수업의 읽기 과제로도 빠질 수 없는 그야말로 seminal work입니다. 그의 주요한 업적 중 하나가 바로 Paxos 알고리즘인데, 최근에는 Chubby나 Zookeeper 등의 제품으로 구현되어 분산 시스템의 중요성이 점점 떠오르고 있는 요즈음 더욱 더 일상적으로 쓰이게 되어가고 있습니다.

The Paxos algorithm, when presented in plain English, is very simple.

Abstract에서 보다시피 이 글은 Paxos 알고리즘을 쉬운 말로 설명하고자 하는 시도인데, 합의 문제로부터 정의되는 조건을 충족하기 위한 자연스러운 해결책이 바로 Paxos 알고리즘임을 보이려 하고  있습니다.

하지만, 논리적인 단계들을 정확하기 이해하기 위해서는 쉬운 말로 쓰여진 용어들을 정확하게 해석해야 하기 때문에, 프로그래머 입장에서 볼 때는, 오히려 의사 코드 수준으로 설명하는 다른 글 (예를 들어, Paxos Made Moderately Complex)들이 훨씬 더 이해하기 쉽다는 생각이 들었습니다.

아래는 요약이라고 하기에는 너무 길고, 그렇다고 번역이라고 할 수도 없지만, 개인적으로 중요하다고 생각한 점들을 기록한 메모라고 보시면 좋을 것 같습니다.

Read More

Consistency Tradeoffs in Modern Distributed Database System Design

지난 번에 소개했던 IEEE Computer 2012년 2월호의 CAP Theorem 특집 중 세번째 글입니다. CAP Theorem 특집을 읽게된 계기도 바로 이 글의 저자인 Abadi의 블로그 글이었습니다.

Consistency Tradeoffs in Modern Distributed Database System Design by Daniel J. Abadi

Critique

현대의 DDBS에서 CAP의 consistency/availability tradeoff 보다 consistency/latency tradeoff가 중요한 설계상의 결정임을 주장하고 PACELC라는 모델을 제안하고 있습니다.

CAP 만으로 설명하기 어려웠던 설계 결정들에 대해 의문이 있었다면 PACELC가 완벽하지는 않지만 CAP에 비해서 더 좋은 모델임에 동의할 수 있을 것 같습니다. 주변 분들에게도 PACELC에 대해서 설명해주면 당연하게 받아들이는 눈치였습니다. 한편, 이 글은 매우 간결하면서도 문제로부터 결론을 도출하기 까지 논리의 흐름이 부드럽게 이어지기 때문에 이해가 잘 되고 그리 무겁지 않게 읽을 수 있습니다.

PACELC의 개념이 직관적으로는 이해하기 쉬운 반면, 현재 존재하는 시스템을 분류할 때 저자도 언급하고 있는 애매한 점들이 등장하는 것을 보면 엄밀한 도구라고 보기에는 약간 무리입니다. tradeoff 의 모든 측면을 모델로 표현하는 것은 매우 어렵기 때문에 베이스라인이라는 표현과 이로부터 상대적인 tradeoff의 유무를 기준으로 사용한 것 같습니다.

역시 완벽하지는 않겠지만 현대의 DDBS에서 활용하고 있는 설계 결정들을 모두 정리해서 스펙트럼 또는 이에 상응하는 모델로 정리할 수 있다면 앞으로의 DDBS 프레임워크의 발전에서 중요한 기초가 될 수 있지 않을까 생각합니다.

아래는 이 글의 요약입니다.

CAP is for Failure

CAP에서 consistency와 availability 사이의 tradeoff를 발생시키는 요소는 단지 partition tolerance 만이 아니라, partition tolerance와 network partition의 존재, 두 가지 요소의 조합이기 때문에, network partition이 존재하지 않을 때, CAP 자체는 consistency와 availability를 동시에 만족시키는 시스템을 허용하고 있다.

Consistency/Latency Tradeoff

network partition이 존재하지 않는다고 하더라도 consistency, availability, latency 사이의 tradeoff는 존재한다. 이러한 tradeoff가 존재하는 이유는 high availability 요구사항으로 인해 시스템은 데이터를 복제해야하기 때문이다.

Data Replication

시스템이 데이터를 복제하는 순간부터 consistency와 latency 사이의 tradeoff가 발생한다. 데이터 복제를 구현하는 데에는 아래와 같이 3개의 방법이 존재하지만, 각각은 모두 latency의 요소가 존재한다.

(1) 데이터의 업데이트를 동시에 모든 복제본으로 보내기

선처리 레이어(preprocessing protocol)를 통과하지 않거나 합의 프로토콜 (agreement protocol)이 없다면 오퍼레이션의 적용 순서의 차이로 인해 복제본들 사이의 차이가 발생한다. 선처리 레이어나 합의 프로토콜을 사용한다면 모든 복제본들이 합의된 순서대로 업데이트를 적용하는 것을 보장할 수 있지만, 선처리 레이어를 위한 추가적인 시스템 컴포넌트, 모든 복제본에 대한 업데이트, 합의 프로토콜 자체 등 latency가 발생하는 여러가지 원인들이 된다.

(2) 데이터의 업데이트를 합의된 마스터 노드에 먼저 보내기

마스터 노드는 모든 업데이트 요청을 처리하고 마스터 노드가 처리한 순서는 마스터 노드가 모든 리플리카에 복제하면서 다른 복제본들에도 그대로 적용된다.

마스터로부터 다른 복제본으로의 복제 방법은 아래와 같은 3가지가 존재한다.

a. 동기적인 복제: 복제본들로의 업데이트가 일어날 때까지 마스터 노드는 대기한다. 복제본들이 consistent하지만, 모든 복제본들의 업데이트로 인해 latency가 증가한다.

b. 비동기적인 복제: 복제본들이 업데이트 되었다는 보장이 없으므로, consistency/latency tradeoff는 시스템이 읽기를 어떻게 다루느냐에 달려있다.

i. 시스템이 모든 읽기를 마스터 노드에서 수행한다면 consistency의 감소가 없지만, 마스터 노드가 다른 복제본에 비해서 가까운 곳에 있지 않을 때, 또는 마스터 노드가 과부하 상태이거나 동작 불능 상태일 때는 latency가 발생한다.

ii. 어떤 노드에서도 읽기를 수행하도록 한다면 읽기의 latency는 좋아지지만, 동일한 데이터의 inconsistent한 읽기가 발생한다. update sequence number의 추적을 통해 sequential/timeline consistency 또는 read-your-writes consistency를 구현해 consistency의 감소를 줄일 수 있다.

c. 데이터의 업데이트를 복제본의 일부에 대해서는 동기적으로 복제하고, 나머지는 비동기적으로 복제한다. 이 경우에도 consistency/latency tradeoff는 시스템이 읽기를 다루는 방식에 달려있다.

i. 동기적으로 복제가 된 적어도 1개 이상의 노드로부터 읽기를 수행한다. (R + W > N)

ii. 동기적으로 업데이트 되지 않은 노드들에서 읽기를 수행하도록 허용한다. (R + W <= N)

(3) 데이터의 업데이트를 임의의 노드에 먼저 보내기

하나의 데이터 항목에 대한 두개의 업데이트가 서로 다른 노드로 보내질 수 있다. 동기적인 복제인가, 비동기적인 복제인가에 따라서 (1), (2)에서와 같은 latency 문제나 consistency 문제가 발생한다.

Tradeoff Examples

PNUTS의 경우, 마스터 노드로부터 비동기적으로 데이터를 복제하고, 아무 노드에서나 읽기를 수행하므로 (즉, 2-b-ii의 경우), latency를 위해 consistency를 tradeoff 하고 있다. 반면, CAP의 관점에서는 network partition이 발생했을 때, 소수 (minority) 파티션에 존재하는 마스터 노드는 사용 불가능하므로 consistency를 위해 availability를 trade-off하는 CP 시스템에 해당한다.

PNUTS는 일반적인 상황 (baseline case)에서 consistency를 희생하는 선택은 CAP에서의 consistency/availability tradeoff 라기보다는 consistency/latency tradeoff 때문이라고 할 수 있고, 일반적인 시스템에서 consistency를 희생하는 주된 이유가 CAP이 아니라는 증거를 보여주고 있다.

PACELC

DDBS에서의 consistency tradeoff는 CAP 대신 다음과 같은 PACELC로 좀 더 완전한 설명이 가능하다.

  • if there is a partition (P), how does the system trade off availability and consistency (A and C);
  • else (E), how does the system trade off latency and consistency (L and C)?

예를 들어, partition이 발생했을 때 availability를 위해 consistency를 포기하고, 보통의 상황에서는 낮은 latency를 위해 consistency를 포기하는 Dynamo, Cassandra, Riak과 같은 시스템들은 PA/EL 시스템이다. VoltDB/H-Store, Megastore와 같은 ACID 시스템들, BigTable과 이에 관련된 시스템들 (e.g. HBase) 은 PC/EC 시스템이다. MongoDB는 partition이 발생했을 때 master에서 복제되지 않은 데이터가 있더라도 새로운 master를 선출해서 서비스를 하기 때문에 PA/EC 시스템이다. PNUTS는 위에서 설명한대로 PC/EL 시스템이다. (이 때, PC는 CAP에서의 consistency가 아니라 일반적인 상황에 대비해서 consistency를 희생하지 않는다는 의미이다.)